On the Relative Importance of SO₂ oxidation to High Dust SCR DeNOx units #### Morten Thellefsen Nielsen Haldor Topsøe A/S, Denmark **Allegheny Power** ### **Outline** - Introduction - SO₃ formation and related problems - SO₃ capture by fly ash - Prediction of SO₃ concentration at SCR outlet - Model description and results - SO₃ sampling technique - A critical review of the Controlled Condensation Method - SO₃ capture by fly ash on filter - SO₃ collection - SO₄2- determination - Case studies - The fate of SO₃ in coal fired power plants - Sampling related problems - Results from two U.S. coal fired power plants - Harrison Power Plant (3 x 640 MW) - Pleasants Power Plant (2 x 625 MW) - Conclusions ## SO₃ formation and related problems #### SO₃ formation - Furnace - rule of thumb (US-EPA) - SCR SO₂ oxidation - Total 0.7 % of SO_2 conc. 0.5-1 % of SO₂ conc. 1.2-1.7 % of SO₂ conc. ## SO₃ capture by fly ash Less SO₂ oxidation in power plant SCR DeNOx compared to dust free laboratory measurements STATE OF STA CaO, MgO, Na₂O, K₂O, Fe₂O₃ ### **Prediction advantages:** - More accurate SO₃ concentrations at the SCR outlet - Air heater optimization - Effect of fuel switching or SCR retrofitting ## SO₃ capture by fly ash - model The SO₃ removal rate in the flue gas follows a simple reaction mechanism: $$-\mathbf{r}_{SO_3} = \mathbf{k} \cdot \mathbf{C}_{SO_3} \cdot \mathbf{C}_{CaO}$$ Reaction constant \rightarrow temperature Gaseous SO₃ concentration Concentration of alkaline sites - \rightarrow ash composition - \rightarrow ash concentration - → particle size distibution ## SO₃ capture by fly ash - model #### Pilot plant experients - dust type - dust loading - residence time - temperature - SO₃ conc. #### PRB-ash - Alkaline - Fines ## **SO₃ measurements**Controlled Condensation Method- a critical review ## SO₃ measurements - collection ## SO₃ measurements - ash filtration #### Coal fired power plant - bituminous coal - outlet of two SCR's - 750 °F flue gas #### **Sampling** - in-duct quartz wool plug - perpendicular sampling - re-using filter in consecutive measurements ## SO₃ measurements - ash filtration #### Pilot plant experiments - bituminous coal ash - 32 ppm SO₃ inlet - quartz plane filter - filter load 2 grains/ft³ ## Case studies - the fate of SO₃ ## Case studies - power plant data #### **Harrison power station** - 3 x 640 MW - high sulfur bituminous coal - SCR deNOx - rotary air heater - cold side ESP - wet SO₂ scrubber - sulfite precipitation #### Pleasants power station - 2 x 625 MW - high sulfur bituminous coal - SCR deNOx - rotary air heater - cold side ESP - wet SO₂ scrubber - forced oxidation ## Case stories - results SCR DeNOx - Double determinations in three sampling ports - Four SCR units tested on each power plant - >12 hour stabilization time - Static mixers upstream sample ports at Harrison | | Harrison | <u>Pleasants</u> | |--|-----------------|------------------| | - SO ₂ in | 2323 - 2692 ppm | 2740 - 3254 ppm | | SO ₃ in | 26 - 30 ppm | 19 - 37 ppm | | inlet stratification | | | | · SO ₂ | 2.8 - 5.2 % | 1.4 - 7.3 % | | • SO ₃ | 7 - 15 % | 5 - 42 % | | SO ₂ out / SO ₂ in | 0.98 - 1.09 | 0.96 - 1.01 | | SO₂ oxidation | 0.29 - 0.81 % | 0.42 - 0.92 % | | Temperature | 630 - 678 °F | 658 - 696 °F | # Case stories - results ESP and Stack ➤ Significant SO₂/SO₃ stratification at ESP outlet → rotary air heater operation ➤ Some SO₃ removal in FGD SO₃: 17 / 18 ppm SO₂: 2505 / 2407 ppm SO₃: 7.9 / 8.2 ppm SO₂: 2176 / 2162 ppm | | Harrison | <u>Pleasants</u> | |---|----------|------------------| | SO₂ ESP outlet | 2313 ppm | 2370 ppm | | SO₃ ESP outlet | 13 ppm | 40 ppm | | stratification | | | | • SO ₂ | 7.4 % | 14 % | | • SO ₃ | 46 % | 7.5 % | | SO₃ in stack | 10 ppm | 22 ppm | ### **Conclusions** - SO₃ capture by fly ash reduces observed SO₂ oxidation across SCR DeNOx - Prediction by simple reaction mechanism - SO₃ sampling is not simple - SO₃ capture by fly ash on filter - Risk of insufficient SO₃ collection - Underestimation of true SO₃ concentration - SO₃ emissions depends on the overall operation of the power plant - furnace, SCR deNOx, rotary airheater, ESP and FGD